Exascale computing, which has been long talked about, is now – if everything remains on track – only a few years away. Billions of dollars are being spent worldwide to develop systems capable of an exaflops of computation, which is 50 times the performance of the most capacious systems the current Top500 supercomputer rankings and will usher in the next generation of HPC workloads. As we have talked about at The Next Platform, China is pushing ahead with three projects aimed at delivering exascale systems to the market, with a prototype – dubbed the Tianhe-3 – being prepped for next year. For its part, the National Strategic Computing Initiative in the United States is readying two exascale-capable systems for delivery in in 2021. The demand for exascale capabilities within the HPC community is growing almost as fast as the amount of data being accumulated in the scientific and commercial arenas. Exascale systems will drive the latest applications in everything from meteorological research and high-end healthcare to oil and gas exploration, to national security and to emerging workloads like artificial intelligence. The work to design and develop these systems is ongoing, and the architecture for these systems – and what technologies they will use – is still continuing to evolve. A key driver is to find ways to get as much performance out of the exascale systems as possible while keeping a lid on the power consumption. AMD Research, the research division of the chip maker, recently took a look at using accelerated processing units (APUs, AMD’s name for processors with integrated CPUs and GPUs) combined with multiple memory technologies, advanced power-management techniques, and an architecture leveraging what they call “chiplets” to create a compute building block called the Exascale Node Architecture (ENA) that would form the foundation for a high performing and highly efficient exascale-capable system. Learn more at https://www.nextplatform.com/2017/02/28/amd-researchers-eye-apus-exascale/