Education and Outreach Blog

« Back

Weather the storm: Improving Great Lakes Modeling

Up until now, atmospheric models and hydrodynamic models have remained separate to a large extent in the Great Lakes region, with only a few attempts to loosely couple them. In a new study, published online this week in the Journal of Climate, an integrated model brings together climate and water models. The collaborative work is the product of researchers from Michigan Technological University, Loyola Marymount University, LimnoTech and the National Oceanic and Atmospheric Administration's Great Lakes Environmental Research Laboratory. Pengfei Xue, an assistant professor of civil and environmental engineering at Michigan Tech, led the study through his work at the Great Lakes Research Center on campus. "One of the important concepts in climate change, in addition to knowing the warming trend, is understanding that extreme events become more severe," Xue says. "That is both a challenge and an important focus in regional climate modeling." To make those connections, the model specifically uses two-way coupling and 3-dimensional modeling to connect atmospheric and lake body interactions. Two-way coupling is like a two-way street and enables feedback between variables; other models use preset inputs that act more like one-way streets. Current models also rely on 1-D lake models that cannot account for the dynamic nature of hydrologic processes in bodies of water as large as the Great Lakes. Read more at https://www.sciencedaily.com/releases/2016/11/161121144605.htm

Comments
Trackback URL:

No comments yet. Be the first.