XSEDE Science Successes
Bouncing Proteins
Promising Drug Leads Identified to Combat Heart Disease
UC San Diego-Monash University Team Perform Unprecedented Sampling of Proteins
By Warren Froelich, SDSC Communications
Using a unique computational approach to rapidly sample, in millisecond time intervals, proteins in their natural state of gyrating, bobbing, and weaving, a research team from UC San Diego and Monash University in Australia has identified promising drug leads that may selectively combat heart disease, from arrhythmias to cardiac failure.
Reported in the September 5, 2016Proceedings of the National Academy of Sciences (PNAS) Early Edition, the researchers used the computing power ofGordon and Comet, based at the San Diego Supercomputer Center (SDSC) at UC San Diego; and Stampede, at the Texas Advanced Computing Center at the University of Texas at Austin, to perform an unprecedented survey of protein structures using accelerated molecular dynamics or aMD – a method that performs a more complete sampling of the myriad shapes and conformations that a target protein molecule may go through.
The computing resources were provided by the National Science Foundation-funded Extreme Science and Engineering Discovery Environment (XSEDE) program, one of the most advanced collections of integrated digital resources and services in the world.
"The supercomputing power of Gordon, Comet, and Stampede allows us to run hundreds-of-nanosecond aMD simulations, which are able to capture millisecond timescale events in complex biomolecules," said the study's first author Yinglong Miao, a research specialist with the Howard Hughes Medical Institute at UC San Diego and research scientist with the UC San Diego Department of Pharmacology.
Though effective in most cases, today's heart medications – many of which act on M2 muscarinic acetylcholine receptors or M2 mAChRs that decrease heart rate and reduce heart contractions – may carry side effects, sometimes serious. That's because the genetic sequence of M2 mAChR's primary ‘orthosteric' binding site is "highly conserved," and found in at least four other receptor types that are widely spread in the body, yielding unwanted results.
For this reason, drug designers are seeking a different approach, homing in on molecular targets or so-called "allosteric binding sites" that reside away from the receptor's primary binding site and are built around a more diverse genetic sequence and structure than their counterpart ‘orthosteric' binding sites. Essentially, allosteric modulators act as a kind of cellular dimmer-switch that, once turned on, ‘fine tunes' the activation and pharmacological profile of the target receptor.
"Allosteric sites typically exhibit great sequence diversity and therefore present exciting new targets for designing selective therapeutics," said the study's co-investigator J. Andrew McCammon, the Joseph E. Mayer Chair of Theoretical Chemistry, a Howard Hughes Medical Institute investigator, and Distinguished Professor of Pharmacology, all at UC San Diego. McCammon was named the winner of the 2016-17 Joseph O. Hirschfelder Prize in Theoretical Chemistry, awarded by the Theoretical Chemistry Institute at the University of Wisconsin-Madison, last week.
In particular, drug designers have begun to aggressively search for allosteric modulators to fine-tune medications that bind to G protein-coupled receptors (GPCRs), the largest and most diverse group of membrane receptors in animals, plants, fungi and protozoa. These cell surface receptors act like an inbox for messages in the form of light energy, hormones and neurotransmitters, and perform an incredible array of functions in the human body.
In fact, between one-third to one-half of all marketed drugs act by binding to GPCRs, treating diseases including cancer, asthma, schizophrenia, Alzheimer's and Parkinson's disease, and heart disease.
More Targeted Therapies
Though many of the GPCR drugs have made their way to the medicine cabinet, most -- including M2 mAChR targeted drugs -- exhibit side effects owing to their lack of specificity. All these drugs target the orthosteric binding sites of receptors, thus creating the push to find more targeted therapies based on allosteric sites.
"The problem here is that molecules that bind to these allosteric sites have proven extremely difficult to identify using conventional high-throughput screening techniques," said McCammon, also a chemistry and biochemistry professor in UC San Diego's Division of Physical Sciences.
Enter accelerated molecular dynamics and supercomputing. As described in this latest study, calledAccelerated structure-based design of chemically diverse allosteric modulators of a muscarinic G protein-coupled receptor, some 38 lead compounds were selected from a database of compounds from the National Cancer Institute, using computationally enhanced simulations to account for binding strength and receptor flexibility. About half of these compounds exhibited the hallmarks of an allosteric behavior in subsequent in vitro experiments, with about a dozen showing strong affinity to the M2 mAChR binding site. Of these, the researchers highlighted two showing both strong affinity and high selectivity in studies of cellular behavior. These cutting-edge experiments were performed by collaborators from the Monash Institute of Pharmaceutical Sciences.
"To our knowledge, this study demonstrates for the first time an unprecedented successful structure-based approach to identify chemically diverse and selective GPCR allosteric modulators with outstanding potential for further structure-activity relationship studies," the researchers wrote.
The next steps will involve an investigation of the chemical properties of these novel molecules by the molecular chemists from Monash, led by Celine Valant and her colleague Arthur Christopoulos.
"This is just the beginning. We believe that it will be possible to apply our combined cutting-edge in silico andin vitro techniques to a wide array of receptor targets that are involved in some of the most devastating diseases," said Valant, the study's co-lead investigator from Monash.
Also participating in the study were Dahlia Goldfeld, from the UC San Diego Department of Pharmacology; and Ee Von Moo and Patrick M. Sexton from Monash University.
Funding for this research was provided by grants from the National Science Foundation (MCB1020765, the National Institutes of Health (GM31749), Howard Hughes Medical Institute, the National Biomedical Computation Resource (NBCR), and the National Health and Medical Research Council (NHMRC) of Australia (APP1055134; APP1082318). In addition to XSEDE, supercomputing time was also provided by theHopper and Edison supercomputers through the National Energy Research Scientific Computing Center (NERSC).
About SDSC
As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC's Comet joins the Center's data-intensiveGordon cluster, and are both part of the National Science Foundation's XSEDE (Extreme Science and Engineering Discovery Environment) program.

The M2 muscarinic acetylcholine receptor (orange ribbons) plays a key role in regulating the human heart rate and heart contraction forces. In contrast to compounds that bind to the highly conserved "orthosteric" binding site and cause serious side effects (yellow spheres), allosteric modulators (purple spheres) bind to target sites with great sequence diversity and provide potential selective treatment of heart disease. Credit: Yinglong Miao, Howard Hughes Medical Institute at UC San Diego
- XSEDE Resources, Trinity Enable Non-Human Primate Reference Transcriptome Resource to Support Study of Genes in Our Closest Relatives
- Turtle Tree of Life
- Region 1 Champions meet at Idaho National Laboratory
- Crash test simulations expose real risks
- NSF supports development of new arctic maps
- How was the planet Earth formed?
- Exploring Large Data for Scientific Discovery
- XSEDE Value Added
- Scholars program helps realize dream
- Making sense of cyberinfrastructure
- XSEDE15 Wrap Up
- Bioinformatics Scripts Solutions
- XSEDE15 Plenary Panel
- Polymer Potential
- The Future of NSF Advanced Computing Infrastructure
- 2015 International Summer School on HPC Challenges
- A Catalyst for Complexity
- As Austin Grows So Does Its Traffic Woes
- The University of Tennessee, Knoxville, Wins Second Place in an International Student Supercomputing Competition
- PSC Receives NSF Award for Bridges Supercomputer
- Innovative New Supercomputers Increase Nation's Computational Capacity and Capability
- Exploring Competitive Balance
- A Direct Bridge
- The Dopamine Transporter
- XSEDE Supercomputers Laid the Foundation for an Unprecedented Simulation of Cosmological Evolution
- Big Data Needs Big Funding
- XSEDE helps create a more effective way to assemble genomic information
- Of Micelles and Machines
- XSEDE Allocation System to Receive Makeover
- Internet2: Advancing Science in the Age of Big Data
- XSEDE User Portal At Your Fingertips: Mobile App
- Researchers Study Air Pollution
- Dan Stanzione: New Executive Director at TACC
- People of XSEDE: Campus Champions - Preaching the HPC Gospel
- XSEDE and Blue Waters Go Supernova
- Two at a Time
- Show Him the Money
- Cosmic Slurp
- Turning Salt into the Unknown
- Looking Inside Images
- Farming the Wind
- Breaking out of the Digital Graveyard
- The Mechanism of Short-term Memory
- Open Science and Industry Collaboration
- XSEDE, Prace Call for Requests of Joint Support
- XSEDE Wins HPCWire Award
- Shields to Maximum, Mr. Scott
- The Ultimate Timekeeper
- Blue Waters, XSEDE sign collaborative agreement
- People of XSEDE - Outreach programs set XSEDE apart
- Wrangler Reels in Award
- The Great Comet: NSF awards $12 Million Grant to SDSC to deploy Comet
- Meet the Gribbles
- 2013 Nobel Prize in Chemistry winners bring HPC to the lab
- XSEDE helps create a more effective way to assemble genomic information
- XSEDE facilitates large-scale image analysis to understand diseases
- XSEDE announces new campus briding services and tools
- XSEDE, NSF Release Cloud Survey Report
- XSEDE13: Programming Competition Allows Students to "Geek Out" and Gain Crucial Skillsets
- Katlin Thaney gave XSEDE13 Keynote: Gateways for Open Science
- XSEDE13 conference selects best papers, posters visualizations and more
- XSEDE13 speaker tells how turbulence simulations help make movie magic
- XSEDE13 Plenary Talk: Accelerating Brain Research with Supercomputers
- Invited speakers announced for Extreme Scaling Workshop - Heterogenous Computing
- XSEDE13 speaker LeManuel "Lee" Bitsóí: Democratizing Scientific Research
Read more about Bitsóí's talk at this year's conference - More than 70 students from 4 continents gain HPC skills at fourth annual Summer School
- Registration opens for Extreme Scaling Workshop 2013
- Campus Champions Fellows Named
- Campus Champions program reaches 200 members
- Rock Snot Genomics: University of Texas researchers use advanced sequencing and TACC's Ranger supercomputer to uncover origin of common algae
- Experiencing some turbulence: Researchers Take on One of Physics' Most Important and Enduring Problems
- Register now for Virtual School summer courses on data-intensive and many-core computing
- XSEDE seeks a Scientific Workflow Specialist for Extended Collaborative Support Service
Applications are due May 31, 2013 - XSEDE13 schedule now available online
- Students from high school to grad school levels invited to participate in programming contest at XSEDE13 high performance computing conference
- SDSC's Gordon enables discoveries in the study of genetics Read about Gordon's role in pinpointing the genetic patterns underlying autism-spectrum disorders, schizophrenia and similar brain conditions.
- XSEDE, National Computational Science Institute offer summer workshops for educators
- XSEDE13 Student Day applications due May 15 High school and undergraduate students get hands-on experience in computational science and interact with expert researchers
- XSEDE upgrades to Internet2's 100G Network
- XSEDE13 Registration now open!
- Get to know XSEDE Staff XSEDE Allocations Manager Ken Hackworth: The Man, The Myth, The Legend
- Two sponsors commit to XSEDE13 conference: Cray and Intel .
- Texas Unleashes Stampede
- Swirling Secrets-Understanding the turbulence of gases
- Blacklight helps researchers develop better materials for carbon capture
- Journey to the limits of spacetime
- Students invited to participate in XSEDE13 Multiple ways for high school, undergraduate, and graduate students to get involved; funding support available.
- XSEDE Call for Humanities, Arts and Social Science ProjectsIf you and your collaborators need to access to large collections of digital data, need more computer power, or require substantial storage capacity and computing power – please share it with XSEDE.
- XSEDE needs your feedback! If you received an invitation to complete the 2013 User Satisfaction Survey, please take 10 minutes today to share your comments about the XSEDE user experience.
- XSEDE deploys Globus Online for data transfer The first official software service on XSEDE has been accepted for production deployment
-
The Stampede Era Begins XSEDE supercomputer now operational and available to the national open science community
- Call for ParticipationInternational Summer School on HPC Challenges in Computational Sciences
- XSEDE, European Grid Infrastructure seek collaborative use cases
Deadline extended to March 8! - XSEDE offers free online parallel computing course Learn to use parallel computers more efficiently and productively
- NICS makes the top of Green500 list XSEDE partner recognized for energy-conscious high-performance computer, Beacon
- XSEDE's John Towns appointed to Compute Canada board of directors Board includes leaders in industry, academia, and computational research
- STILL ACCEPTING RESPONSES to Cloud Use Survey from XSEDE, NSF All researchers encouraged to respond and help shape future of cloud computing in XSEDE
- Make room for Stampede: TACC expands data center for new supercomputer
Read more about the new data center at TACC
See TACC Deputy Director, Dan Stanzione describe the new center - SDSC welcomes Gordon supercomputer as a research powerhouse
Read more about SDSC's Gordon - Campus Bridging Early Adopter Program issues Call For Proposals to be submitted Dec. 1-9
Read more about the program - XSEDE12 announced -- first conference of Extreme Science and Engineering Discovery Environment
Read more about XSEDE12 - PSC, SGI Team Up on Shared-Memory Supercomputer
Read more about PSC's shared-memory supercomputer - Pittsburgh Supercomputing Center Wins High-Performance Computing Award
Read more about PSC - Blacklight Goes to Work at the Pittsburgh Supercomputing Center
Read more about Blacklight - Ranger supercomputer's lifespan extended one year as part of NSF XD initiative.
Read more about Ranger - Kraken set to deliver 2 billionth CPU hour, sustains 96 percent utilization
Read more about Kraken - TACC Offers New, Broader Computational Biology Software Stack to Open Science Community.
Read more about biology software stack - ACM launches new Special Interest Group on High Performance Computing. Join by Nov. 18 for special rate.
Read more about the new SIGHPC - 'What Are You Working on Today,' Ranger, Jaguar and iForge?
Read more about TACC's Ranger supercomputer
Read more about ORNL's Jaguar supercomputer
Read more about NCSA's iForge supercomputer - Adventures with HPC Accelerators, GPUs and Intel MIC Coprocessors
Read more about experiences with new hardware - Developing Scientific Computing Communities
Read more about development efforts - Indiana University to create the National Center for Genome Analysis Support, which will be integrated with XSEDE resources
Read more about the NCGAS at IU - Scientists use XSEDE/TeraGrid resources to determine how shock waves move through solids
Read more about 'super-elastic shock waves' - XSEDE upgrades network
Read more about the XSEDE upgrade - Richard Tapia, Rice University mathematician and professor and member of XSEDE outreach team, receives National Medal of Science
Watch the Oct. 21 webcast
Read more about Tapia's award
Learn more about Richard Tapia - Stampede's comprehensive capabilities to bolster U.S. open science computational resources
Read more about Stampede
Watch a video of Jay Boisseau, director of TACC, discussing Stampede - SDSC announces scalable, high-performance data storage cloud
Read more about SDSC cloud - Appro and SDSC Gordon supercomputer to provide up to 35M IOPS
Read more about SDSC's Gordon - Dr. Barry Schneider from the National Science Foundation to describe XSEDE in the Oklahoma Supercomputing Symposium keynote, Oct. 11-12
Read more about Dr. Schneider's keynote
Go to symposium site - Students research solar cells with HPC
Read more about HPC and solar research - Seeing Is Believing: Extreme Digital visualization and data analysis resources help researchers derive insights from massive data sets
Read more about Extreme Digital - New "Memory Advantage Program" on Blacklight at the Pittsburgh Supercomputing Center
Read more about PSC's MAP - XSEDE project brings advanced cyberinfrastructure, digital services, and expertise to nation's scientists and engineers
Read more about XSEDE - Watch the John Towns video
- How XSEDE will facilitate collaborative science
Read more about XSEDE and collaboration